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20% per day. It remains to be determined whether this variation can
be attributed to food-web structure, the ratio of nutrients (C:N:P),
or to environmental factors such as light and temperature. M
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Methods

Field sampling. Methods speci®c to Mouse and Ranger Lake are described

elsewhere7. Methods for the remaining 18 lakes are described below. Only lakes

that had a maximum depth $4 m were considered, in order to minimize

benthic effects on the pelagic zone (Table 1). Lakes on rivers were avoided, to

limit the effects of river water on the pelagic environment. Lakes with minimal

shoreline development (except Nakamun Lake) were chosen, to minimize

human effects on lake nutrient cycling. Most lakes had thermally strati®ed

water columns; however, two isothermal lakes were included from the Interior

Plains (Table 1). Only lakes with total phosphorus concentrations below

100 mg l-1 were selected. Water (20 litres) was removed at the mid-epilimnetic

depth of each lake with a Van Dorn sampler and placed in 20-litre polyethylene

containers (acid-washed) held in coolers. When a distinct epilimnion or mixing

depth was not present, water was removed from just below the surface (#1 m).

Laboratory methods. Detailed laboratory methods are described elsewhere7.

Lake water was placed in 4-litre clear polyethylene containers that had been

washed (0.1% contrad-70), rinsed (ethanol) and leached (0.1 M HCl). Each

sample was incubated with carrier-free radiophosphate (33PO4; 270±

2,100 Bq ml-1; ICN Biomedicals) for ,27 h (range 21±47 h) to label the

planktonic community. Lake water was incubated near ambient temperatures

(62 8C), which ranged from 18 to 22 8C. This range minimized the effects of

temperature on rate measurements. Incubations were terminated by injection

of competitive inhibitor (31PO4; ®nal concentration 1±5 mg P litre-1). This

prevented re-incorporation of 33P after it was released from the plankton. We

then measured the accumulation of 33P in the dissolved pool over time: the

slope of this line provided an estimate of the release rate of dissolved 33P. The

remaining lake water was analysed for total P (ref. 22), which was calculated as

the sum of dissolved and particulate P. The release rate of dissolved P was

calculated by using the following formula: P release rate � 33P release rate 3

total P=total 33P, so our de®nition for phosphorus regeneration was the

transfer of phosphorus from the particulate pool (.0.2 mm) to the dissolved

pool (,0.2 mm) over time. Egestion, excretion, decay, cell lysis, cellular exudate

and sloppy feeding (uningested food) all contribute to this process. Radio-

activity was measured by liquid scintillation and corrected for background

radioactivity. Quenching of samples was not detected.
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Digital organisms are computer programs that self-replicate,
mutate and adapt by natural selection1±3. They offer an opportu-
nity to test generalizations about living systems that may extend
beyond the organic life that biologists usually study. Here we have
generated two classes of digital organism: simple programs
selected solely for rapid replication, and complex programs
selected to perform mathematical operations that accelerate
replication through a set of de®ned `metabolic' rewards. To
examine the differences in their genetic architecture, we intro-
duced millions of single and multiple mutations into each organ-
ism and measured the effects on the organism's ®tness. The
complex organisms are more robust than the simple ones with
respect to the average effects of single mutations. Interactions
among mutations are common and usually yield higher ®tness
than predicted from the component mutations assuming multi-
plicative effects; such interactions are especially important in the
complex organisms. Frequent interactions among mutations have
also been seen in bacteria, fungi and fruit¯ies4±6. Our ®ndings
support the view that interactions are a general feature of genetic
systems7±9.

Many fundamental questions in biology are dif®cult to address, as
a consequence of the high dimensionality of genomes7±9 as well as
the practical dif®culties of manipulating numerous genotypes and
analysing their resulting phenotypic properties. Progress has been
made using microorganisms4,510±18, but these problems remain
daunting. An alternative approach involves studying arti®cial life,
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in particular certain computer programsÐor digital organismsÐ
that share with real organisms the properties of self-replication,
mutation, competition and evolution, as well as genomes with high
dimensionality and hence indeterminate evolutionary trajectories.
The use of digital organisms to address biological questions is
controversial, but it can be justi®ed on several grounds. First,
arti®cial life allows us to seek generalizations beyond the organic
forms that biologists have studied to date, all of which derive from a
common ancestor and share the same basic chemistry of DNA, RNA
and proteins. Maynard Smith makes the case thus19: `̀ So far, we have
been able to study only one evolving system and we cannot wait for
interstellar ¯ight to provide us with a second. If we want to discover
generalizations about evolving systems, we will have to look at
arti®cial ones.'' Second, digital organisms allow us to perform
experiments on a scale that is unattainable with real organisms.
Here we test billions of different genotypes to measure mutational
effects and interactions; a recent experiment with the bacterium
Escherichia coli did so using a few hundred genotypes4. Moreover,
the performance of digital organisms can be measured exactly,
whereas such data are subject to error, and hence loss of statistical
power, in any real biological system. Third, there is growing interest
in using programs that can evolve to solve complex computational
problems20±23. Knowing how mutations affect performance and
interact with one another has important implications for setting
parameters such as mutation and recombination rates, just as
mutational effects and interactions can in¯uence the evolution of
these parameters in real organisms4,6,24±28.

Our experiments were performed using Avida, a ¯exible platform
for research on arti®cial life3. Brie¯y, digital organisms are self-

replicating computer programs that compete for central processing
unit (CPU) time, which is the fuel needed for their replication. The
programs mutate at random and evolve in a de®ned computational
environment. Each digital organism has a genome length measured
as the number of sequential instructions in its program. The
sequence of instructions can change by mutation, including inser-
tion and deletion events as well as point mutations that change one
instruction to another. There are 28 different instructions, which
can be thought of as analogous to the 20 different amino acids
strung together in proteins. There is no imposed limit to the
genome length of these digital organisms.

Starting from a short ancestral program, we generated 87 differ-
ent `complex' organisms by allowing replicated populations to
evolve in an environment in which: (1) the baseline allocation of
CPU time is proportional to genome size; and (2) certain mathe-
matical operations, which require novel combinations of instruc-
tions, are rewarded with additional CPU time. For example, digital
organisms may be rewarded for performing an `XOR' operation
(`exclusive-or' in which A or B is true, but not both) on 32-bit inputs
using a series of `NAND' operations (`not-and' in which A and B are
not simultaneously true). `XOR' is among the more complicated
logical operations; `NAND' is the only logical operator given as an
instruction in Avida. In essence, these operations are a kind of
metabolism that allows the digital organisms to acquire the CPU
time needed for their replication. Starting from each complex
organism, we derived a `simple' organism that evolved in an
environment that favoured faster replication and nothing else: (1)
the allocation of CPU time is independent of genome length; and
(2) mathematical operations are not rewarded. Thus, we de®ne
simple and complex organisms by the different environments in
which they evolved. However, we cannot exclude the possibility that
aspects other than functional complexity might contribute to
differences between the two classes; for example, relaxed selection
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Figure 1 Proportion of single point mutations that are lethal for digital organisms.

Shown as a function of log10-transformed genome length. Circles, complex

organisms; triangles, simple organisms.
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Figure 2 Log10-transformed mean ®tness as a function of number of point

mutations for simple and complex classes of digital organisms. Solid curve C

shows the ®tness function calculated using the average parameter values from

the complex organisms. Dashed line Cm is their ®tness function expected under

the multiplicative model (obtained using the average a and setting b � 1). Solid

curve S is the ®tness function for the average simple organism. Dashed line Sm

gives the corresponding function expected under the multiplicative model.
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Figure 3 Proportions of mutational pairs classi®ed according to their interaction.

L, lethal: at least one mutation is lethal alone, as is the double mutant. M,

multiplicative: neither mutation is lethal, and the relative ®tness of the double

mutant is exactly equal to the product of the relative ®tnesses of the two single

mutations. E, epistatic: the double mutant's ®tness is unequal to the multiplicative

expectation. S, synergistic: double mutant less ®t than expected. A, antagonistic:

the double mutant is more ®t than expected. Average distributions are for

complex organisms (a), simple organisms (b), complex excluding lethals (c), and

simple excluding lethals (d).

Table 1 Comparisons between complex and simple digital organisms of
genome size and several mutational-effect parameters

Response variable Mean complex
(6 s.d.)

Mean simple
(6 s.d.)

Mean difference
(6 s.d.)

P*

.............................................................................................................................................................................

Genome length 91.25 19.80 71.45 ,0.0001
(69.07) (14.18) (64.76)

Decay test, a 0.581 1.141 -0.560 ,0.0001
(0.207) (0.591) (0.562)

Decay test, b 0.896 0.972 -0.077 0.0011
(0.081) (0.192) (0.201)

Pair test, proportion 0.191 0.045 0.146 ,0.0001
epistatic of total (0.093) (0.080) (0.122)
Pair test, proportion 0.743 0.781 -0.038 0.4374
epistatic of non-lethal (0.243) (0.234) (0.303)
Pair test, proportion 0.271 0.168 0.103 ,0.0001
synergistic of epistatic (0.093) (0.159) (0.175)
.............................................................................................................................................................................

*Two-tailed Wilcoxon signed-ranks test of the differences between 87 paired complex and
simple organisms.
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for genome size in complex organisms may promote genetic
redundancy, with attendant consequences for mutational effects.

All 87 simple digital organisms have shorter genomes than their
paired complex progenitors, with mean lengths of 19.8 and 91.3
instructions, respectively (Table 1). In every case, both simple and
complex digital organisms became more ®t than their progenitors
in their respective environments, where ®tness is simply an organ-
ism's replication rate. Using all 174 complex and simple organisms,
we then performed two experiments to investigate the effects of
mutations and their interactions with respect to ®tness. In the ®rst
experimentÐthe `decay test'Ðwe generated, for each organism,
every possible mutant program that contained exactly one point
mutation, plus a million (or more) programs with between two and
ten random mutations. For each mutant, we measured ®tness
relative to its unmutated parent in the parent's selective environ-
ment. Then, for each parent, we regressed the average mutant ®tness
W versus mutation number M using a power function:
log10W � 2 aMb. In biological terms, a describes the rate at
which ®tness decays under a multiplicative hypothesis, whereas b
describes the form of `epistasis'. If b � 1, mutational effects are
multiplicative; if b . 1, each successive mutation tends to reduce
®tness more than previous ones (synergistic epistasis); and if b , 1,
each additional mutation is progressively less damaging on average
(antagonistic epistasis). The parameter a is measured without error
because W � 1 when M � 0 (by de®nition) and every possible
mutant with M � 1 is tested, whereas b is estimated from sample
data. The power function ®ts these data very well; unlike a quadratic
function4, it never predicts that the decay curve bends upwards at
high M.

Simple organisms are much more fragile than their complex
counterparts with respect to the ®tness effects of single mutations,
as indicated by higher values of a �P , 0:0001; Table 1). This
difference occurs because more mutations are lethal (prevent self-
replication) in smaller genomes than in larger genomes (Fig. 1); on
average, 92% and 53% of single mutations were lethal to simple and
complex organisms, respectively. Partly offsetting this effect, non-
lethal mutations are less damaging to the simple digital organisms;
one non-lethal mutation reduces ®tness by 11%, on average, in
simple organisms, but by 44% in complex ones. The simple
organisms do nothing except self-replicate; mutations that disrupt
self-replication tend to be lethal, whereas most others are fairly
harmless. The complex organisms perform mathematical functions
in addition to self-replicating; most mutations that impact these
functions hinder performance but are not lethal.

Simple and complex digital organisms also differ in terms of b,
which indicates the average form of interaction (P � 0:0011;
Table 1). In complex organisms, successive mutations tend to
reduce ®tness less than would be expected if effects were indepen-
dent (b , 1), that is, complex organisms are also robust to the
cumulative effect of multiple mutations. By contrast, successive
mutations do not deviate signi®cantly from multiplicative effects
(b � 1) in simple organisms (P � 0:2360, Wilcoxon signed-ranks
test). Figure 2 shows the difference between simple and complex
digital organisms in their ®tness decay curves, including the effects
of both a and b.

The fact that simple organisms appear to show multiplicative
effects of mutations on average ®tness may mean either that there is
little epistasis or that epistasis is widespread but different sets of
mutations interact in opposite ways, obscuring the overall signal4,27.
We ran a second experimentÐthe `pair test'Ðto distinguish
between these two possibilities and gain further insight into the
differences between simple and complex organisms. Instead of
measuring ®tness as progressively more mutations are added, as
in the decay test, we examined numerous pairs of mutations by
comparing the actual ®tness of each double mutant with the
expected ®tness assuming multiplicative effects of the component
mutations. The pair test shows that epistasis is more common in

complex organisms than in their simple counterparts (P , 0:0001;
Table 1), with 19% of all mutation pairs deviating from multi-
plicative effects in the average complex organism (Fig. 3a) com-
pared with ,5% in the average simple organism (Fig. 3b).
Frequencies of epistatic interactions are much higher if we exclude
lethal pairs, in which actual and expected ®tnesses are both zero
(Fig. 3c, d). Excluding lethal pairs, which are much more common
in simple organisms, there is no difference between classes in the
prevalence of epistasis (P � 0:4374; Table 1). In both classes of
digital organisms, epistatic interactions include a mixture of synergistic
and antagonistic effects, and antagonistic effects are more common
than synergy. Complex organisms are more prone to synergistic
effects when expressed as a percentage of epistatic interactions
(P , 0:0001; Table 1), but the overall excess of antagonism is greater
in complex organisms. The failure of the decay test to ®nd a
signi®cant deviation from multiplicative effects in the simple
organisms evidently re¯ects a combination of two factors: epistasis
is infrequent, and synergistic and antagonistic interactions oppose
one another.

In summary, mutations in digital organisms frequently exhibit
epistasis, including a diverse mixture of synergistic and antagonistic
interactions. Such interactions are especially pronounced in the
complex digital organisms that evolved large genomes and are
rewarded for mathematical operations beyond self-replication.
Frequent epistasis, including a mix of synergistic and antagonistic
effects, also exists in a variety of real organisms4±6. Thus, digital
organisms experience complicated responses to genetic perturba-
tions that appear similar to those seen in real organisms. The
genomes and performances of digital organisms can be studied
with far greater replication and precision than can be achieved with
any real organism. Digital organisms may therefore offer a useful
tool for addressing other biological questions in which complexity is
both a barrier to understanding and an essential feature of the whole
living system. Moreover, digital organisms allow us to test general
hypotheses with a system that is built upon an arti®cial chemistry
completely different from that used by real organisms. M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods

Evolution of digital organisms. Experiments were performed using version

1.3 of Avida, which can be obtained from http://www.krl.caltech.edu/avida/

pubs/nature99. We used default settings unless otherwise indicated. Our ®rst

step was to generate pairs of complex and simple organisms. All evolution

experiments began with the population at its carrying capacity (3,600

individuals). The probability of point mutation was 0.0075 per instruction

copied; the probabilities of insertion and deletion mutations were each 0.05 per

genome divide. Time is measured in arbitrary units called updates; every

update represents the execution of an average of 30 instructions per individual

in the population. (A typical generation is 5±10 updates, depending on genome

size and execution.) Starting with the default ancestor (genome length 20), a

population of complex organisms was propagated for 50,000 updates in an

environment in which the baseline allocation of CPU time was proportional to

genome size and extra CPU time was obtained by performing mathematical

operations in the default task set. The former condition eliminates selection for

smaller genomes, and the latter condition imposes selection for functional

complexity. The rewards for performing operations are also speci®ed in the

default task set; they are scaled by their approximate dif®culty and combined in

a multiplicative fashion with one another and with the baseline CPU time.

(Note that multiplicative scaling of phenotypic rewards does not imply

multiplicative effects of mutations.) Using random number seeds, 87 complex

populations were derived; subsequent experiments used the numerically

dominant genotype from each population. Starting with each complex

organism as progenitor, a population of simple organisms evolved for 25,000

updates by allocating the same CPU time to all organisms. There was selection

for smaller genome size to promote faster replication and no selection for

mathematical operations. Subsequent experiments used the most abundant

genotype from each population.

Mutational analyses. We developed three genetic tools to analyse the effects of



© 1999 Macmillan Magazines Ltd

letters to nature

664 NATURE | VOL 400 | 12 AUGUST 1999 | www.nature.com

point mutations on the performance of digital organisms. In all cases, the

®tness (replication rate) of each mutant was calculated in the same

environment in which its simple or complex parent evolved, and the mutant's

®tness is expressed relative to the parent. The ®rst tool makes every possible

one-step point mutant for a particular parent. The default set includes 28

different instructions; given a parent of genome length 80, for example, there

are 80 3 �28 2 1� � 2;160 different one-step point mutants. The mean ®tness

of these mutants permits exact calculation of a in the decay test. The second

tool produces a random sample of progeny that differ from their parent by two

or more point mutations. For each parent, we generated between 105 and 107

progeny with two mutations, three mutations and so on, up to ten mutations.

The third tool produces and analyses pairs of point mutations alone and in

combination; for each two-step mutant, we have both corresponding one-step

mutants. Having the single mutants allows us to compare a double mutant's

actual ®tness with the exact value expected under the hypothesis that the

mutations interact in a multiplicative manner. We ran the pair test on 104 and

105 mutational pairs for each complex and simple organism, respectively.

Statistical methods. We performed the Wilcoxon signed-ranks test on the

difference scores for all comparisons between complex and simple organisms29.

This test re¯ects the evolutionary relationship between pairs of organisms; it is

also non-parametric and thus insensitive to deviations from a normal dis-

tribution. To estimate b in the decay tests, we minimized the sum of squared

deviations around the log-transformed mean ®tness values. We excluded

samples with fewer than 100 viable mutants, in which case log mean ®tness

was poorly estimated. By increasing sample size to 108, we can obtain additional

viable mutants; the exclusion of some values because of insuf®cient sampling

appears to have no systematic effect on estimation of b.
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Vascular plants vary in size by about twelve orders of magnitude,
and a single individual sequoia spans nearly this entire range as it
grows from a seedling to a mature tree. Size in¯uences nearly all of
the structural, functional and ecological characteristics of
organisms1,2. Here we present an integrated model for the hydro-
dynamics, biomechanics and branching geometry of plants, based
on the application of a general theory of resource distribution
through hierarchical branching networks3 to the case of vascular
plants. The model successfully predicts a fractal-like architecture
and many known scaling laws, both between and within individ-
ual plants, including allometric exponents which are simple
multiples of 1/4. We show that conducting tubes must taper

Box 1 Notation and geometry

The model can be described as a continuously branching hierarchical

network running from the trunk (level 0) to the petioles (level N), with an

arbitrary level denoted by k (Fig. 1). The architecture is characterized by

three parameters (a, Åa and n), which relate daughter to parent branches:

ratios of branch radii, bk [ rk�1=rk [ n2 a=2, tube radii, bÅk [ ak�1=ak [ n2 Åa=2,

and branch lengths, gk [ lk�1=lk and also the branching ratio, n, the number

of daughter branches derived from a parent branch. Because the total

number of tubes is preserved at each branching, n � nk�1=nk, where nk is

the numberof tubes in a kth-level branch; n is taken to be independent of k

and typically equals 2. Clearly, nk � nNnN 2 k , where N is the total numberof

branching generations from trunk to petiole, and nN is the number of tubes

in a petiole, which is taken to be an invariant. Now, for a volume-®lling

network, gk � n2 1=3, independent of k (ref. 3). If tube tapering is uniform, Åa

is also independent of k, and it follows that

rk

rN

� n�N 2 k�a=2;
ak

aN

�
rk

rN

� �Åa=a

;
lk
lN

�
rk

rN

� �2=3a

�1�

Various scaling laws can now be derived. For example, the number

of terminal branches or leaves distal to the kth branch, nL
k � nk=nN �

nN 2 k � �rk=rN�
2=a , and the area of conductive tissue (CT), ACT

k �

nkpa2
k � ACT

N �rk=rN�
2�1� Åa�=a , where ACT

N � nNpa2
N is the area of conductive

tissue in a petiole. Thus, the area of conductive tissue relative to the

total (tot) branch cross-sectional area (Atot
k � pr2

k) is given by

fk [
ACT

k

Atot
k

� nN

a2
N

r2
N

� �
rk

rN

� �2�1� Åa 2 a�=a

�2�

The total cross-sectional area scales as nAtot
k�1=A

tot
k � nb2

k � n1 2 a. When

a � 1 this reduces to unity and the branching is area-preserving; that is,

the cross-sectional area of the daughter branches is equal to that of the

parent: nAtot
k�1 � Atot

k . A simple example of this, considered in ref. 3, is the

pipe model6, in which all tubes have the same constant diameter ( Åa � 0),

are tightly bundled and have no non-conducting tissue. Here we consider

the more realistic case in which tubes are loosely packed in sapwood and

there may be non-conducting heartwood providingadditional mechanical

stability.


